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The problem of the nonlinear time evolution of a cold bearn—plasma system, for which weak turbulence
theory is well known to be inapplicable, is examined under the restrictions to one-dimensional electrostatic
oscillations and for systems where the ratio of the beam density to the background plasma density is a
small parameter. In this case, it may be shown that the eleetrostatic field undergoes rapid growth to a
state of meta-equilibrium, followed by a slower time development. The mechanism for the nonlinear satura-
tion of this growth is the trapping of beam electrons in the wave troughs of the electrostatic field. The
existence of a unique single wave nonlinear Bernstein-Greene-Kruskal stationary state is established
for this system and its properties (e.g., its energy content, wavelength, phase velocity) are evaluated.
This Bernstein-Greene-Kruskal state is apparently approached closely by the system in the course of its
time evolution. The predictions of the theories are compared with computer calculations and are found

to be in good agreement.

I. INTRODUCTION

The problem considered herein is the nonlinear be-
havior of unstable collisionless cold beam-plasma sys-
tems., Most successful advances of nonlinear plasma
theory have fallen within the framework of “weak
turbulence,” introduced by the 1962 treatment of the
“gentle bump'” instability by Drummond and Pines,!
and by Vedenov, Velikhov, and Sagdeev,? This weak
turbulence theory is characterized by an expansion of
perturbations on the Maxwell-Vlasov equations in
powers of the electric field energy, typically yielding a
wave kinetic equation (for the time evolution of the
spectrumn) which may be cast in a quantum mechanical
vernacular a la Feynman.? Although this weak turbu-
lence theory may be applied to a large class of plasma
instabilities, including the gentle bump instability men-
tioned above, the requirements for its validity are
violated for many other instabilities, among which is
the cold (hence not gentle) beam-plasma instability.
However, the increasing study of such problems through
numerical simulation on high-speed digital computers?:s
provides considerable guidance for the development of
a new theory.

Among the restrictions which underlie this analysis
are the assumption of a spatially homogeneous initial
state, the neglect of ion dynamics® {formally by assum-
ing an infinite ion mass), the restriction to one spatial
dimension (although physical relevance may be re-
tained for systems in which an “infinite’” magnetic
field likewise restricts the particle motion to one di-
mension), the neglect of all effects associated with
finite static magnetic fields, and the imposition of
periodic boundary conditions in space with an initial
value problem posed in time.

In addition, the following ordering of lengths is
assumed, as discussed also by Buneman,” to justify
iurther simplifications which are itemized below:

D> 2rme/ o 2/ wpsdhpod, (1)

where D is a characteristic plasma dimension, ¢ i
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the speed of light, « is the streaming velocity of the
beam with respect to the background plasma, w,=
(drne’/m)*® is the electron plasma frequency, Ap.=
(T/4mrnet) " is the Debye shiclding distance, d is the
average interparticle distance, and e(=|e|}, m, 8
and 7 are the electronic charge, mass, density, and
temperature in energy units, respectively.

(a) Surface or boundary effects are neglected.

(b) Relativistic effects are neglected, and only long-
tudinal electrostatic oscillations are considered. Hence,
the electric field E may be represented as the gradient
of an electrostatic potential ¢ E= —dg/dx.

(c) The initial state of the system is assumed to
consist of two species of cold electrons {background
electrons and beam electrons), and we are particularly
interested in the case where the relative streaming
velocity # between these two spectes is orders of mag-
nitude larger than the thermal velacity (T/m)"* of
either species, so that the initial velocity distribution
may be adequately represented by a delta function.

{d} The plasmas are assumed to be collisionles,
and hence dominated by collective effects.

Finally, the density of the beam electrons is assumed
to be much less than that of the background electrons,
50 that 5= (wp?/ wy?)<1 is a small parameter. In fact,
we shall strengthen this assumption by also requirisg
that 5151 since it is this latter quantity which appears
in many of the expansions. Corollaries of this assump-
tion are the dominance of the electrostatic field spec-
trum by a single Fourier mode, and the existence of an
adiabatic invariant to deseribe the evolution of the
background electrons in the (x, ») phase space.

The hasic equations for the problem are the Viasav
equation for the distribution function of each particle
species, and Poisson’s equation for the self-consistent
electric field. These equations and all of their conse
quences are invariant under Galilean transformations.

From the Vlasov—Poisson equations and the assump-
tion of periodic boundary conditions, the usual con-
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servation equations follow tmmediately

jj {n{, 1) )= %(j: dvF,(x, o t)> —0,

ie, particles of each species are conserved;

d
&}( a}§6m3<£mdw :L’U!)) 0 (3

ie, the total momentum density is conserved;

L +s)]

d = .
= —( > dm; <[ detF (%, v, t)>
3 N b —a

1

ie, the total energy density is conserved. Here, F;,
P, T, and & are the particle distribution function,
momentum density, kinetic energy density, and electric
feld energy density; the subscripts e and b denote
background and beam electrons, respectively; and the
symbol ( )} denotes a spatial average. Although
{m:(x, 1)), &{t), and Eqgs. (2), (3}, and (4) are frame-
independent, P;{¢) and T,(#) will he frame-dependent.

I REVIEW OF LINEAR THEORY AND THE
INITIAL NONLINEAR DEVELOPMENT

Since the linear theory of beam-plasma systems is
well known,® and a simple model of the initial non-
linear development of this problem has been presented
by Drummond e al.? we confine ourselves to the follow-
bag brief review.

In the laboratory frame, the linear dispersion re-
latior is

1— (WPZ/'NE) - [ﬂﬁ-‘pz/ (w_ k‘h’-) 2]= O) (S)
where w,=wp., k is taken to be real, and «w(k) is the
complex frequency which describes the time behavior
of the #th Fourier mode. The solution to (5) is depicted
graphically in Fig. 1, which reveals the existence of
complex conjugate unstable solutions for « when
|k| < (wp/u) (14-53)5"2 The frequency, wavenumber
gowth rate, and group velocity of the most unstable
Jnear wave are

=L 1— (h) 0 2 (3) 254 -

br={wp/w) (143 (3m) 4+ ;
vi=0 33 (Gn) =13 (B )t (6)

The extremely peaked growth rate function v (k) is
one of the most striking results of linear theory, since
it will produce a very narrow wave spectrum. The
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F16. 1. Linear dispersion relation.

half-width of (k) is Ak=0(5"%.). Since we have
assumed an extremely low initial noise level, the un-

‘stable waves must e-fold many times before nonlinear

effects become important. After N e-folds (i.e, N=
vct), the half-width of the energy spectrum is sk=
O(N"Yi8,Y and hence in the limit 531 and
NYZ31 the wave spectrum may become effectively
dominated by a single sinusoidal oscillation.

To explore the plausibility of a single wave spectrum
somewhat more thoroughly, we consider the normalized
autocorrelation function:

Ut ry={(E*(%, 1) E(x, (4+1) ) )/ {{| E(x, D)[2}),

where {{ )) is a statistical phase averaging eperation
that may be replaced by a time average by appeal to
an ergotic theorem, In linear theory one obtains

e Ex ()
Ui, m) = kz‘n &0)

exply(k)r—ia(kir],  (7)

where

)= 3 80 =

hr=—ra

kZ | Ex |* exp{ 2y (&)1]

is the linear mode decomposition of the field energy
density. In the case of a single (&) mode this reduces
to Ualt, r)=exp[y(k)7] cose(k)r and except for
the ordinary damping or growth evidenced by (&),
the single wave autocorrelation function expertences
no decay as r—+oe so that a single wave should retain
its waveform indefinitely according to linear theory.
However, for a spectrum of growing waves, the auto-
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correlation function reveals two competing effects in
addition to the ordinary growth. First, there is the
increasing tendency of the various mode contributions
to U7(¢4, 7) to cancel with increasing r causing the
eventual decay of the correlation function te zero.
This primary effect is only slightly retarded by the
tendency of the wave spectrum to narrow as it e-folds
with 7, The result, in this case, is the correlation time
TR (ANVI4H 1) fyp, where | U(e, 27, |<} exp(yrr).
Altheugh the correlation time is not infinite as for &
single wave, the fact that it is many e-folding periods
suggest that the dominance of the wave spectrum by a
single mode may persist well into the nonlinear regime,
It is this intermediate time, nonlinear single wave
regime of the instability which we now consider.

Examination of the single wave linear theory reveals
that by the time that the electric field energy density
has grown to §(¢)==0.209'37;(0), where 73(0) = Imampe®
is the initial kinetic energy density of the beam elec-
trons, the density fluctuations of the beam electrons
will have hecome so large that linear theory is no
longer valid for them. However, the background elec-
trons continue to chey linear theory. In addition, be-
cause the backpround electrons have a large velocity
relative to the growing wave, one may define for them
a quantity J= (| o(H, %, )|} which Is preserved adia-
batically invariant during their evolution.

According to this approximation, which is discussed
in more detail in the Appendix, the “fast” background
electrons “see’ the electric field growing so slowly that
they cling to phase space trajectories of constant energy.
In the wave frame, these have the form

Hx, o, t)=%me*—[eE(t) /] coskx, {8}

where

E(x, 1) = Eqy exp (f

)

I3
dr 7(7)) sinkx= K({) sinkx

is the electric field. These trajectories in turn deform
slowly so as to preserve J invariance. -

Single particles obey Hamiltonian equations of me-
tion, with X given in Eq. (8). If the time dependence
of E{1) were to vanish, H would be a constant of the
moticn and the constant energy contours of Eq. (8)
would be the actual particle trajectories so long as
E()=0, When E(#} is weakly time dependent (i.e.,
its change is small during a particle transit time across
a wavelength), H is nonconstant so that the contours
deform in phase space aceording to J invariance.

The function »(H, x, #) required in the definition
of J is obtained by inverting Eq. (8), and & and ¢
are to be held fixed during the spatial average. One
finds

I=

T\ mk

: ("E(”)m{ Sth—1)xEal )

+SU—w[E(x)~ (1= K{x) ]}, (9)
where k= [J[1+EH/eE(!)]})12, K and E, are complete
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elliptic integrals of the first and second kind, and
Si{py=1+4% sgne is the unit step function.

The constant energy contours of Eq, (8), illustrated
by the dashed lines in Figs. 1-3 of Ref, 9, are unbounded
in x for k> 1, but are closed hounded contours for <1,
Since E(f) is initially quite small, «{t) is initially
quite large, and as E{) increases x({} must decrease
for J to remain invariant. We cail x{¢) the trapping
parameter; particles for which «>1 are said to be
untrapped and those for which «<1 are said to be
trapped. However, it should be clearly noted that s
particle which is instantaneously located on a trapped
energy contour will move on that contour only if the
adiabatic approximation is valid, and even then the
contour may slowiy deform. Furthermore, it is possible
for a particle once located on a trapped contour to
subsequently be located on an untrapped contour if the
eleciric field magnitude were to decrease sufficiently.

Since the brace in Eq. {9) is a monotonically in-
creasing function of «, the adiabatic appreximation re-
quires that x should continually decrease so long as
E(t) increases. Hence, there is some critical field ampli-
tude for which « is reduced to 1 and the particles in
question become trapped. This first occurs for particles
with the lowest J. The background electrons have
Jo=] 1 |=u—ve=u[1—0("% ], evaluated initially
when E(0)~0 and using the linear wave phase ve
locity. The beam electrons have Jy=wa= 05"/,
which correctly suggests that the beam electrons first
become trapped.

However, the beam electron transit time is com-
parahle to the growth time of the field, so that the
adiabatic approximation is not so goed for them and
may not be used for quantitative calculations. It does
contain a germ of qualitative understanding of the
initial nonlinear interation: The electric field grows
unti! it is large enough to trap the-beam electrons. As
described more fully in Ref. 9, the trapping proces
is best visualized in terms of a sequence of dlagrams
of the electron (x, ») phase space coordiates in the
wave frame.

Initially, the beam electrons are distributed along
the line v=wup. At the instant of marginal trapping
they will be distributed along an inverted u-shaped
line in the upper (#>0) hali-plane of phase space,
with some electrons just reduced to zero velocity in
the wave frame. [If J Invariance were valid, this
beam electron trajectory would have the form v=
2(eE(t)/mk)V? | coskx |.] This onset of a multivalued
flow velocity »(x) is a frame-invariant symptom of the
trapping of a cold species. Subsequently, beam elec-
trons will rotate into the lower (»<C0) half-plane of
phase space, giving up a substantial amount of labe
ratory frame (i.e., the initial frame of the background
electrons) kinetic energy to the background and field
as they do so. After a half-cycle, heam electrons wil
be distributed along a #-shaped trajectory with nega-
tive wave frame velocities, and they will have given
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up a2 maximum amount of kinetic energy. At this
point the electric field will be nonlinearly saturated,
having achieved its maxiraum energy. As the beam
perticles continue to rotate in phase space through the
second hali-cycle, they retrieve some of the lost labo-
rtory frame kinetic energy, and the electric field
aergy correspondingly decreases from its maximum
to a relative minimum. Cwing to the nonadiabaticity
of the beam electrons, they are trapped on different
_energy contours, rotate at different frequencies, and
lence become smeared out in phase space. This will
cause the amplitude of the field energy fluctuations to
decay, and the system therefore assumes the character
of o metastable state with some mean field energy
about which the decaying fluctuations occur,

Since the background electrons continue to obey
fiear theory, their laboratory frame kinetic {“slosh-
g") energy is equal to the electric field energy, and
bence is half of the energy given up by the beam elec-
trons. Therefore, one finds™ that

smeunwﬁgmu’vfﬂhmu ( H— t"?’) %2_‘”37?1 s 7 (0) ) ( 10)

where Erpx 15 the saturation energy, Emema 18 the electric
field energy in the metastable state, and 1, is the wave
phase velocity, for which the linear value is used.
{Of course, the background electrons are still very much
untrapped : x> 1.

1. THE SINGLE WAVE BERNSTEIN-GREENE-
KRUSKAL STATIONARY STATE

Since the result of the nonlinear dynamical theory
s that the beam-plasma system seems to approach
wme sort of metastable state—except for possible
loog term effects—we address the question of whether
of not there exists a Bernstein—-Greene—Kruskal sta-
tionary state for which

(1) the electric field consists of a single sinuseidal
mode,

{2) the beam electrons are completely trapped, and

(3) the total energy density, momentum density,
and particle number density (of each species) are con-
stived with respect to the initial state of the cold,
weak beam-plasma instability.

We do nof prescribe @ priori the wavenumber, the
wive phase velocity (i.e,, the frame in which the wave
i stationary), or the amplitude of the electric field.
The linear theory predictions of these quantities are
found in Eqs. {(6) and (10).

We proceed in the spirit of the original Bernstein—
Greene—Kruskal paper of 195717 The calculation is
performed in the wave frame so that all quantities
ae time independent. The solutions to the time-
independent Vlasov equation must be functions of
Bz, v)=4mi*— (eE,/k,) cosk.r, where the electric
field has the assumed form

de(x)

E(x)=E, sinka=— .
dx

and
elx)={(FE,/ka) coskax,

The infinitely massive lons enter only in a trivial
manner as usual, The distribution of the untrapped
background electrons is assumed known—given by the
approximation of adiabatic invariance, which agrees to
several orders in »*® with the approximation of linear
theory. This distribution is given in Eqs. (11} and
(12) below:

Fe(s,v)=FLH{x )]
Ea 1/2
=7, (m: ) KK (k) 8 H—1,), (11}
4 Ec: 1/2 )
—(8 ) ke (k) = vy = J.. (12)
nky
Here, H. and «, may be thought of as completely

equivalent and interchangeable parameters, related
though the definition wx.=[3(14kl./eE,) ]t Either
parameter may be replaced by the other via this
definition, and we express the equations in terms of
whichever parameter seems more convenient, The un-
known quantity wg is the initial velocity of the beam
electrons relative to the stationary wave frame, We
note that the background electrons are hydrodynam-
ically cold, being distributed along a constant energy
(H.) contour in phase space. The normalization factors
in Eq. (11} have been chosen to satisfy Eq. (2) for
conservation of background particles.

We proceed as in the Bernstein—Greene—Kruskal
paper by inverting Polsson’s equation to obtain the
distribution of trapped beam electrons. It is convenient
to employ the substitution

fdwr(xv%fm_m (%)

where (0H/0v)(H, x)=mu(H, ) = £ | 2m[ H-+ep(x) |}V2.
For the background electrons this procedure iz un-
ambiguous since they always have negative velocities
(as can be verified later) and one need only be careful
to keep the signs straight. The trapped beam electrons
must be symmetrically distributed between the two
directions of velocity in order to have a time-inde-
pendent distrihution. Therefore, a factor of 2 may
occur in the mapping from 7 to H, but this factor is
assumed absorbed in {(#, x).

We may now write equations which correspond to
Egs. (9), (10}, and (11) of the Bernstein-Greene-
Kruskal paper, and for convenience we adopt reason-
ably similar notation,

() = glee)
_ f T L FyH [2m{ By ee) T (13)

is just the density of the trapped beam electrons. The
implication of Eq. (13) that g(e¢min) =0 simply re-
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flects the fact that the beam particle density must
vanish at the nodes of the trapping separatrix [i.e.,
at the points x=4{w/k.) Xodd integer]. One also
notes that for the trapped beam electrons,

_6Enr/kaSHbS 8Ea/ka= — €¢min,
or 0<w<l,

—E@nnx =

Poisson’s equation is invoked to determine the trapped
beam particle density in terms of the known back-
ground density, ion density, and the electrostatic
potential:

() =glop) = —
PRI TRV e da?

_ f JHF,

—é¥min
= (B2/A7e) VA tiab iy — 1, (e Eaf 221
X kK (k) (Hok V)= g(V),  (14)

where V=ep= (eE./k.} cosk.x. With g(ew) determined
from Eq. {14), one may invert Eq. (13) to obtain the
distribution F(&H,) of the trapped beam electrons.
This may be done by noting that (13) is an integral
equation of the convolution type and hence solvable
by the Laplace transformation, or by noting that' (13)
has the form of Abel's equation whose solution is
familiar. The result is

{(2m) 112 f—”bdv

T ¥ lo

H)D2m{H+ep) 02

dg(V)
av
If Eq. (14) is inserted into (15), the integrations may
be performed to yield
o

yui2 -(eF
7 \ kg

Fy(H,) = (—Hy— V)12 (13)

Fy(Hy) =~ (3m

1/2
) iy

E(GEa/k.,) _Hbjlﬂ
H,—H '

5 (1 k812K () (16)

The solution for the beam particle density represented
by Eq. {14) will automatically satisfy Eq. (2) for
conservation of beam particles [i.e., (n{x) )=m | since
the coeflicients in Eq. {11} were chosen to conserve
background particles. However, the requirement that
gleomin} =0 is not automatically satisfied by Eq. (14),
and so this condition replaces the particle conservation
as a constraint among the various unknowns:

g(e‘?"min> = (kaEa/47re) T+t
(= k) KA () =0, (17)

This equation may also be thought of as a boundary
condition [to Eq. {13)], whose validity was tacitly
assumed in the inversion of Eq. (13) to Eqg. (15).

One now imposes the remaining constraints of Egs.
(3} and (4) for the conservation of the total momen-
tum and energy density relative to the initial state
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of the cold, weak beam—plasma instability. Noting that
the final state wave frame momentum of the beam
electrons must vanish by symmetry, for the momentum
conservation one ghtains

— i, (m;uEﬂ)mng_l (k)
+mn{u—uvw) —mmuep=0. (18)
For energy conservation, one finds
- TR () (1
—dmn, (u—we) 2 smmae?=0.  (19)

Now, the problem is reduced to an examination of
the equations for consistent solutions. The background
parameter &, {or H,) is determined, in principle, by
Eq. (12), and the remaining three parameters of the
single wave Bernstein—Greene—Kruskal stationary state
(ko U, Fa) are determined from the constraint Eqgs.
(17), (18), and (19), provided that these equations
have a consistent set of solutions. If one expands these
equations in the small parameters »'*<&1 and «,7'<1,
one finds that they do have unique consistent solutions,
which are surnmarized below:

Kol= 2??”3(1“!”%73(7’?”3"' . )
b= g,
By = u_vlpa=§’71”u(1+m”3+ ' ')1
Ba= (167) " El= I 0Ty (0) (14 §n'/ -+ ).

It is interesting to compare these results with the
linear theory predictions of Egs. {6) and (10). One
notes that k, differs from £z, only by terms of O{n%%y),
Since the half-width of the v(%) function is O{n'3;),
the Bernstein—Greene—Kruskal wavenumber also falls
right on the peak of v{£) as is to be expected. Com-
parison of the phase velocities reveals the significant
fact that the Bernstein-Greené—Kruskal wave phase
velocity is about ¢yn'/* slower than the linear phase
velocity, Hence, as the system evolves toward the
stationary state, the wave must be slowed by nonlinear
effects. The predicted electric field energy of Eq. {10)
is seen to be abaut 209 lower than the value found in
Eq. {20). This is because the calculation of Eq. (1)
did not anticipate the slowing of the wave. In light
of this new information, it would be appropriate to
increase the prediction of the maximum field energy
from 2Rl T,{0) to some value between 273431, (0)
and 527, (0), depending upon the slowing achieved
at the time of the first energy peak.

In the laboratory frame, the change in kinetic energy
density which occurs between the initial state and the
stationary state is found to be AT, b= Ea(14ntt-1)
and ATy 1p=8a{—2—5"3—--+), which confirms the
splitting of beam energy between the background elec-
trons and the field. In the wave frame, however, it is

(wg/0) (L+42
{20)
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the background electrons which give up energy, most
ging to the electrostatic field and only '8, going
to the beam. In the wave frame, the beam loses energy
of directed motion in the amount dmmueicin'/38, as it
i slowed by the wave, but it gains thermal energy in
the amount §5/%8, with the difference provided by the
background electrons. This thermal energy corresponds
g an average beam thermal velocity of ww3V3yl/u.

One may examine, within linear theory, the effect
of increasing the beam thermal velocity from zero {as
treated herein} to a value high enough that the beam
becomes a gentle bump {as treated by Drummond and
Pines'). Such a transition analysis has been completed
by O'Neil and Malmberg,” and reveals a nontrivial
¢hange in the topology of the dispersion relation when
thethermal velocity of the beam is increased to me—n'/3u,
Since nonlinear effects must eventually halt the growth
ol the cold beam—plasma instability, and since the trend
from cold beams to warm beams to gentle bumps to
quasilinearly flattened bumps is ever in the direction
o increased stability, the implication is clearly that
the nonlinear stabilization is likely to be accompanied
by such effects as the heating of the beam to thermal
velacities of O{»'/*u). We see that this inference is
¢orrect.

‘Consider briefly the Bernstein—-Greene—Kruskal par-

tie distribution. We have already remarked that the.

background electrons are hydrodynamically cold, being
distributed along a constant energy contour as indi-
ated by Eq. (11). However, their flow velocity has
fectuations of O(n*®u). The spatially averaged dis-
trhution of the background particles in the wave
frame is

(RLH(x, v) )= (mnu/m)

X[(eEafka)?— (ymnt— H,)* ]2, (21)

where

2 eBN\ T2
- [; (Ee'i‘ )] < Ubaekground /wave frame

ko
2 eE N\ T2
[
m Ra
I these limits are expressed in the lab frame using the
msuits of Eq. (20), one obtains

(22)

For the beam electrons, one may expand Eq. (16)
uslng the results of Eq. (20) to obtain

212y ko H
Fa(Hy)s (1~ b
ok 8Em

- nﬂzu < Vb ackground/lab fr sme < 7?2"3'“'-

)”2E1+0(n“3) 1 (23)

It is appropriate to note that Fy(Hs) is guaranteed
the positive definite character so desirable to distri-
bution functions, provided that »' is small enough.
Also, the trapped beam electrons completely fill the
region of phase space bounded by the trapping sepa-

b
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F1c, 2. Bemstein-Greene-Kruskal phase space diagram.

ratrix, rather than leaving unfilled holes in these
regions. If one spatially averages the beam distribution
of Eq. (23}, one obtains

ka 2\ 1/2
)= 0| (1- 25V, ey

where

Q(g)=Es(g) — (1—¢*) K{g)
and

! 'Ubeam,t‘wave frame | < 2 (eEa/Mku) 112%27?1!3“%4”0&-
Therefore, in the laboratory frame

(1§70 — Hn%) < tpegmpan < (14§11 —§4¥9). (25)

Comparing Eqs. (22) and (25) through O(»¥®)« allows
one to conclude that the beam electrons and back-
ground electrons will clearly be separated in phase space
provided that »'/® $0.32, Of course, this i{s'so in the
limiting case of small ** in which our expansions are
most respresentative of the truth. In Fig, 2, the oc-
cupied regions of phase space in the stationary state
are indicated, and in Fig. 3 the Bemnstein—-Greene--
Kruskal particle distributions of Egs. (21) and (24)
are illustrated.

It may be shown'® that this Bernstein—-Greene-
Kruskal stationary state is also derivable without ad-
ditional approximations from the warm hydrodynam-
ical, or moment eguations. This is possible because
the energy and momentum conservation equations in-
volve no moments higher than the pressure (i.e., the
second moment), and the heat flow function vanishes
identically for the beam particles to decouple the higher
moment equations.

The stability of this stationary state has thus far
been pursued rigorously only to the point of deriving
an integral equation for the eigenmodes of the per-
turbed electric field. Preliminary indications are that
the only modes which retain a possibility of growth
instability are precisely those short wavelength modes
for which the inhomogeniety of the equilibrium cannot
be swept aside,
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distributions.

In summary, the existence of a unique single wave
Bernstein—Greene-Kruskal stationary state for the cold
weak beam-plasma instability has been established.
It has not been shown rigorously that the system does
in fact evolve to this stationary state, but the circum-
stantial evidence suggests strongly that it at least
comes very close. For example, the wawvelength is in
essential agreement with that which dominates the
linear phase of evolution, the energy level is of the
predicted order of magnitude, and the computer sim-
ulations of this problem reveal nonlinear trends toward
this state such as the slowing of the wave below its
linear phase velocity.

The question of the ultimate, time-asymptotic fate
of this instability remains open. Whether or not the
system approaches the stationary state, or merely oscil-
lates about it several times before evolving in a dif-
ferent direction, will largely depend on the stability
properties of the stationary state as well as on such
long time effects as the decorrelation of the single mode
spectrum and the gradual appearance of single particle
or collisional effects.

IV, RESULTS OF COMPUTER CALCULATIONS

The nonlinear limit of beam~plasma instabilities has
been studied by a number of people by computer simula-
tion of the problem. Many of these studies have not
applicable to the problem analyzed herein because the
length separation stipulated in Eq. (1) (i.e., 2ru/w,>
Ap.) was not very wide, or because the “weakness”
parameter »'/® was not so small. We now present the
results of two calculations in which all assumptions
were obeyed, for comparison with the theoretical results.

The first calculation was that of Nordsieck,' who
considered the large signal behavior of traveling wave
amplifiers, following the analysis by Pierce’ and others
on the small signal behavior. He began with the equa-
tions of motion of the electron stream, and with a
circuit equation for the electric field. The circuit equa-
tion has the form of Kelvin's transmission-line equa-
tion, with the beam electrons treated as a distributed
generator. From these equations, Nordsieck derived
working equations (ie., his Eqs. (13}, (14), (17),
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and (20)] which were then solved numerically, His
treatment was of a boundary value problem in space
rather than an initial value problem in time.

However, it is possible to begin with Polsson’s equa-
tion, and the equations of motian {which correspond
to the Vlasov equation)}, and to derive therefrom the
working equations of Nordsieck, In this derivation, one
may consider an initial value problem in time, under
the assumptions that 5<1, that the background elec-
trons behave linearly, and that the electric field spec-
trum is dominated by a single wave, Thus, the hack-
ground electrons correspond formally to the circuit of
the traveling wave tube, and Nardsieck’s results, which
he presented graphically, may be reinterpreted as
results for the weak beam-plasma instability. Nordsieck
followed the problem to the first minimum beyond the
initial maximum of the electrostatic field energy. The
correspondence between Nordsieck’s parameters and
our own is summarized in Table I.

The second calculation was a computer simulation”
in which the equations of motion of a large number
(e.g., 4000 of electraons were iterated as they evolved
in a self-consistent electric field. Poisson’s equation was
solved by the particle-in-celi method, To take advantage
of the fact that background electrons react only linearly,
they were “‘weighted” so that fewer {but heavier and
more highly charged) background electrons need he
followed on the computer, A value of <10~ was used,
and typical values of the cell size, time step, and perio-
dicity length are Ax=0.02(2ru/w,), At=0.005({2r/w,),
L=4(2mu/w,). Storage and time limitations dictate
that the problem be box normalized on a relatively
coarse scate, so that only a few modes occur within the
growth curve y(k) of Fig. 1.

In both of the numerical calculations, it was not
feasible to begin with 2 noisy perturbation of infinites-
imal magnitude, and allow it to e-fold many (eg.
20-30} times before the single mode structure was
established and nonlinear saturation occurred. Instead
one must establish a much larger perturbation which
then e-folds onlv a moderate (e.g., 8-12) number of

Ex

F16. 4. Electric feld energy vs time.
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times in energy prior to saturation, One may begin
with a very small initial thermal velocity (e.g., v<
10u), or else with a small density perturbation (e.g.,
<107, usually of the most unstable mode (only).
The results are not particularly sensitive to the mode
of initialization provided that the perturbations are
as small as indicated.

Figure 4 illustrates the computed electrostatic field
energy development.’ Specific results of the numerical
talculations are itemized and discussed below. Where
two numerical results are listed, the first is that of
Nordsieck.

(1) When the electric field energy has grown to
8=0.018u.x (i€, point A), the growth rate is observed
to be (0,97, 0.97+0.01)y;. Even in thermally ini-
tisted simulations, the fundamental mode {le, k=
uy/) will have captured 999 of the field energy by
this time,

(2) The field energy at the onset of trapping (ie.,
point B}, when the flow velocity of the beam electrons
first becomes multivalued, is found to be Etr npped
(039, 0.314-0.02) &5y, This is a bit higher than the
estimated level [Le, 0.20997,(0)] at which linear
theory would break down for the heam electrons. By
this time of overtaking, the growth rate has decreased
to R (0.79-40.04) A p.

{3) The maximum field energy (ie., point D} is
found to be E.ua=2(1.09, 1.02£0.08)7273,{0). This is
to be compared with the prediction of 0.80512713(0)
of Eq. (10), and with the increased prediction of
{0.80 to 1.00)9'3T5(0) as a result of the Bernstein—
Greene-Kruskal calculation.

_l_—;

(4) The field energy at the first minimum (i.e.,
point E) is found to be &min=(0.14, 0.1240.03) Enpa.
The time between the first maximum and the first
minimum is A2(2,12, 1.8720,04) v,

(8} By the time of the first minimum, Nordsieck’s
results show that the phase velocity of the wave has
decreased by An,22-—0.0435'%, This compares to an
eventual expected decrease of Av,22—0,10353, accord-
ing to the Bernstein—Greene—Kruskal calculation.

(6) The second maximum in the field energy is
roughly &nux 9”2(0.95:£0.15) E4x, Wwhere uncertainty
is due to the rapidly mounting truncation error.

(7) Throughout the period of Fig. 4 (except perhaps
prior to point AJ, the fraction of energy in the funda-
mental mode exceeded 959,

(8) The ratio between the kinetic emergy of the
background electrons and the electric field energy is
found to be 1.1+0.1, or 14+0O{n'*}, throughout Fig. 4.
This confirms the linear behavior of the background
electrons, and demonstrates the splitting of beam energy
between the background and the field.

(9} The computer simulation conserved particles
exactly, and conserved momentum to within at least
10~%mmsae, The truncation error was reflected in a lack
of energy conservation, which was less than 0,058«
prior to the first minimum but rose rapidly thereafter.

In addition to the numerical results reported above,
the expected correlation between phase space dynamics
and field energy fluctuation was observed in the com-
puter simulation. In particular, the trapping and rota-
tion of beam electrons in phase space occurred just as
described in Sec. II and Ref. 9. Figure 5 illustrates the



1540

JAMES R.

BEAM ELECTRONS

BACKGROUND ELECTRONY

X

Frc. 5. Electron phase space coordinates.

phase space coordinates of electrons at a time corre-
sponding to point C of Fig. 4, after trapping but before
saturation of the field energy. The rotation of the
trapped beam electrons is clearly indicated, and the
linear sloshing of the background electrons may also
be observed (barely).

In conclusion, the computer results agree quite nicely
with one another and with the theoretical predictions.
Unfortunately, the aforementioned truncation error and
cost factors have precluded extending the computer
calculations much beyond the domain of Fig. 4.
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APPENDIX, ADIABATIC INVARIANCE

The approximation of adiabatic invariance which we
have employed has been discussed extensively else-
where,” and is a common procedure for dealing with
periodic systems containing a parameter (e.g., the
electric field amplitude) which varies only slowly in
time. In such systems it may happen that on time
scales long enough that some quantities (eg., the
Hamiltonian) vary appreciably, there are other quanti-
ties that vary negligibly and are hence said to be
adiabatically invariant. Our adiabatic invariant is the
familiar action integral: J~ [ p dg.

The classical example of an adiabatic invariance
problem is the harmonic oscillator (i.e., H=3p+}a?g?) .
When the frequency w and hence the Hamiltonian H
are slowly varying functions of time, their ratio will
be adiabatically invariant.

THOMPSON

Since the electric field amplitude changes slowly with
respect to the dynamical time of transit of a back-
ground electron across a wavelength, this approxima-
tion of adiabatic invariance is appropriate for the back-
ground electrons and it may be shawn® that for times
shorter than Of{gws)™, Jema— Jomin/ Je{t=0) <0(n).
However, this is not as strong an endorsement of
this approximation as may he made, since an “'un-
certainty” in the background electron velocity of O{nu}
would imply uncertainty in the momentum and energy
density larger than that of the beam electrons, which
would be intolerable. It is the case though that to the
order required for the validity of the Bernstein—Greene-
Kruskal calculation, J invariance is completely equiv-
alent to linear theory for the background electrons;
and linear theory is obvicusly justified since the ratio
of the electric field energy density to the wave frame
kinetic energy density of the background is O(5#3).

This equivalence is now illustrated via alternative
calculations of the background particle density. We
begin with a single wave tinear theory calculation in
the laboratory frame. If the electric field is taken to
be E{x, 1= E(¢) sin®(x, ), where

E{fy=E, expft dry(r)
and
Bix, H=k (x—j: d-rww(f)) ,

then the background distribution function is found to be

Flx, v, £) =n,d(v)

neeE(1) (k(ﬂw—v) cosd—+ sindﬂ) a
— 4 v Al
+ — Plo— iy = (v)+ (A1}
whence one obtains the density function
e (x, ﬂ) GE(I)
=1— ¢
" ko (D) cosP(x, £)
26E(Dv(8)
— ———— sin®(x, ) +-+-, [AD)
TR sin®(x, &)+ (

Here, we have allowed the growth rate and phase
velocity to be slowly varving functions of time, but
we have neglected the corrections mvolving (1),
#,(t}, etc. The last term listed in Eq. (A2) is O(y)
(ie., the size of #s/n,) if one takes the linear growth
rate, the Bernstein—Greene—Kruskal field amplitude,
and any phase velocity of O(ux). However, as one
approaches the stationary state, v(#)—+, E({}—£,,
e (#)—vpa, and hence the sind® term in Eg. {A2) is
eliminated.

The consideration of the transition between the initial
state and the Bernstein-Greene-Kruskal stationary
state via adiabatic invariance requires the construction
of the adiabatically invariant series J= Jo+ Ji+ Jot



COLLISIONLESS ELECTRON BEAM-FPLASMA SYSTEMS

»-r, where the terms are of successively higher order
in the slowness parameter. {Consideration of adiabatic
ivariance to higher orders in the slowness parameter
isfound in the previous work of Gardner® and Lenard,?
smong others.) For the background electrons, J, is
given in Eq. (9) with «>>1, and the next term is
found to he

Julke 2, £ =[y () /E)(2/7) [Ea{k ) F (k7 dka)
' —K (") Egr(x, §kx)]

=—1[y() /kE ]k ® sinka—++ «» (A3}

epressed in the instantaneous wave frame. (F and
By are incomplete elliptic integrals of the first and
seond kind.) The higher-order terms in the J series
invoive ¥(f)}, 9,(¢), etc. and will not be needed. The
[ series must sum to the constant value |z |, which
51,(f) in the instantaneous wave frame. Because of
the inclusion of the J) correction, the parameter ,
has slight » dependence.

_l mk 1,'2I 1 eE{H\1? 1
w8 = > (e_E(S) 2(t)+ 2( mk ) valt)

(1) feE(O\
+m( v BELCS

and 50 all particles no longer lie on the same constant
tmergy contour. Instead, the contour on which the
background electrons do lie cuts across a small spread
of constant energy contours, and is given hy

(Ad)

oz, ) = —v,(t) — eig) " Ef) coskx
- e—wj;;) Y ((;)) sinkateee. (A3)

The density of such a string of electrons, which has
deformed in phase space from the original line v= —1y,
to the line of Eq. (AS), is simply

ﬁl(xa t) - 3'!.'(:.‘6, 1)
e - dv,
_._ _eE(D _ 2eE(@)y() .
=l— ——— coskx _—mkztvpa 0 sinkx-4

mkv (1)
' (A6)
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which agrees exactly with the linear result of Eq. (A2).
In a similar fashion, one may show that linear theery
and 7 invariance yield identical results for the back-
ground momentum density P,{¢) and the kinetic energy
density 7,(/) through terms the size of the beam mo-
mentum and energy density.

In relating the initial state of the system to a future
stationary state, J invariance reduces to J, invariance
since the higher-order terms in the J series vanish
initially due to the infinitesimal electric field energy,
and finally due to the vanishing slowness parameter.
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